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Abstract. A new integrable differential-difference system is proposed. By the dependent variable
transformation, the system is transformed into multilinear form. By introducing an auxiliary
variable, we further transform it into the bilinear form. Its corresponding Bäcklund transformation
is obtained. Furthermore, nonlinear superposition formulae are presented. As an application of the
obtained results, soliton solutions and rational solutions to the system are derived.

1. Introduction

There has been considerable interest in searching for new integrable discrete systems and
studying their properties. Many papers have been dedicated to the subject, and various
approaches are currently available. Two of them are Hirota’s method and the Bäcklund
transformation [1–8]. In this paper, we will propose a new differential-difference system
and then study it by using the Hirota method. By the dependent variable transformation,
the system under consideration is transformed into multilinear equations. By introducing an
auxiliary variable, we further decouple it into the bilinear form. The corresponding Bäcklund
transformation is found and nonlinear superposition formulae are established. As a result,
multisoliton solutions and rational solutions are derived.

It has been noted recently that the so-called Belov–Chaltikian lattice [9]

bt (n) = b(n) (b(n + 1)− b(n− 1))− c(n) + c(n− 1) (1)

ct (n) = c(n)(b(n + 2)− b(n− 1)) (2)

and the Blaszak–Marciniak lattice [10]

at (n) = c(n + 1)− c(n− 1) (3)

bt (n) = a(n− 1) c(n− 1)− a(n) c(n) (4)

ct (n) = c(n)(b(n)− b(n + 1)) (5)
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are transformed into the following bilinear forms [11, 12]:

(D2
t e

1
2Dn −Dze

1
2Dn)f (n) · f (n) = 0 (6)

(Dze
Dn −D2

t e
Dn + 2e2Dn − 2eDn)f (n) · f (n) = 0 (7)

and

(D2
t − 2Dze

Dn)f (n) · f (n) = 0 (8)

(DzDt − 4 sinh2( 1
2Dn))f (n) · f (n) = 0 (9)

respectively, wherez is an auxiliary variable and the bilinear operators are defined as follows
[2–6]:

Dm
z D

k
t a · b ≡

(
∂

∂z
− ∂

∂z′

)m(
∂

∂t
− ∂

∂t ′

)k
a(z, t) b(z′, t ′)

∣∣∣∣
z′=z,t ′=t

exp(δDn) a(n) · b(n) ≡ exp

[
δ

(
∂

∂n
− ∂

∂n′

)]
a(n) b(n′)

∣∣∣∣
n′=n
= a(n + δ) b(n− δ).

On the other hand, in [13], a new and relatively simple procedure for finding new integrable
differential-difference equations was reported. By combining these two concepts, it is natural
to search for new integrable systems such that the systems have bilinear forms of the type
(6), (7) and (8), (9) and the corresponding bilinear Bäcklund transformations could be found.
With such a motivation in mind, and after some tests and guesswork, we now propose the
following new system:

at (n) = c(n + 1)

c(n)
− c(n)

c(n− 1)
(10)

bt (n + 1) + bt (n) = a(n)− (b(n + 1)− b(n))2 (11)

ct (n) = c(n)(b(n + 1)− b(n)). (12)

Setb(n) = (ln f (n))t . Then from (12) we obtain

(ln c(n))t =
(

ln
f (n + 1)

f (n)

)
t

i.e.

c(n) = c0(n)
f (n + 1)

f (n)

wherec0(n) is some function ofn. In the following, we just consider the casec0(n) = constant,
which corresponds to the soliton case. In this case, we may choosec0 = 1 without loss of
generality. Besides, from (11) we have

a(n) = D2
t f (n + 1) · f (n)
f (n + 1) f (n)

.

Thus, by the dependent variable transformation

a(n) = D2
t f (n + 1) · f (n)
f (n + 1) f (n)

b(n) = (ln f (n))t c(n) = f (n + 1)

f (n)
(13)

equation (10) can be transformed into the following form:[
D2
t f (n + 1) · f (n)
f (n + 1) f (n)

]
t

= f (n + 2)f (n)

f 2(n + 1)
− f (n + 1)f (n− 1)

f 2(n)
(14)

or, equivalently,

Dt(D
2
t e

1
2Dnf (n) · f (n)) · (e1

2Dnf (n) · f (n)) = 2 sinh( 1
2Dn)[e

Dnf (n) · f (n)] · f 2(n). (15)
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By introducing an auxiliary variablez and using (A1), we can decouple (15) into the following
bilinear form:

(Dze
1
2Dn −D2

t e
1
2Dn)f (n) · f (n) = 0 (16)

(DzDt − 4 sinh2( 1
2Dn))f (n) · f (n) = 0. (17)

Reversing the process, we know that iff (n) is a solution of (16) and (17), thena(n), b(n) and
c(n), given by (13), satisfy (10)–(12). It is remarked that, in the continuous case, the technique
to decouple multilinear equations into bilinear ones by introducing auxiliary variables was first
proposed by Hirota and Satsuma. They applied it to the Lax fifth-order KdV equation and a
model equation for shallow water waves [2, 14].

The system (10)–(12) can be rewritten as the following equation for a single field:

uttt (n + 1) + uttt (n) + 2(ut (n + 1)− ut (n))(utt (n + 1)− utt (n))
= eu(n+2)−2u(n+1)+u(n) − eu(n+1)−2u(n)+u(n−1) (18)

whereb(n) = ut (n). It is noted that the highest derivative with respect tot appearing in
(18) contains two terms taking values atn andn + 1, respectively. Therefore, equation (18)
may be viewed as a nonlocal differential-difference equation in this sense. However, to our
knowledge, most integrable differential-difference systems appearing in the literature such as
the Toda lattice or the Volterra equation are local. Therefore, it is far from obvious how to
find such a transformation if there exists some transformation (point transformation, Miura-
like transformation, etc) which relates equation (18) or the system (10)–(12) to some other
one which has already appeared in the literature. On the other hand, from the viewpoint of
bilinear formalism, to our knowledge it is the first time that the bilinear equations (16) and (17)
have been considered simultaneously withz being an auxiliary variable, although (17) is just
the bilinear form of the two-dimensional Toda lattice and can be obtained from the Hirota–
Miwa equation [Z1 exp(D1)+Z2 exp(D2)+Z3 exp(D3)]f ·f = 0 (Zi are arbitrary constants,
f = f (x1, x2, x3),Di = Dxi ) by reduction [15–17]. Based on these explanations, it would be
reasonable to view (10)–(12) or (18) as a new system or equation.

The paper is organized as follows. In section 2 we give a Bäcklund transformation for
equations (16) and (17) and then a nonlinear superposition formula. Soliton solutions of
equations (16) and (17) are then found using this formula. In section 3, another nonlinear
superposition formula is established. As an application of the obtained result, a sequence of
polynomial solutions of (16) and (17) or rational solutions of (10)–(12) are derived. Finally,
conclusions and discussions are given in section 4. The appendix lists some bilinear operator
identities used in this paper.

2. A Bäcklund transformation, nonlinear superposition formula and soliton solutions

In this section, we shall give a Bäcklund transformation and nonlinear superposition formula
for (16) and (17). First, by application of the exchange formalism, one can construct the
following Bäcklund transformation for equations (16) and (17):

(Dt + λ−1e−Dn +µ) f (n) · g(n) = 0 (19)

(Dze
− 1

2Dn − λe
1
2Dn + γe−

1
2Dn) f (n) · g(n) = 0 (20)

(Dz − λ−1Dte
−Dn − λ−1µe−Dn − ω) f (n) · g(n) = 0 (21)

whereλ,µ, γ andω are arbitrary constants. Furthermore, we can show the following result.

Proposition. Let f0 be a solution of equations (16) and (17) and suppose thatfi (i = 1, 2)
are solutions of (16) and (17) which are related tof0 under the BT equations (19)–(21) with
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parameters(λi, µi, γi, ωi), i.e.f0
(λi ,µi ,γi ,ωi )−→ fi (i = 1, 2), λ1λ2 6= 0, fj 6= 0 (j = 0, 1, 2).

Thenf12, defined by

exp
(− 1

2Dn

)
f0 · f12 = c

[
λ1 exp

(− 1
2Dn

)− λ2 exp
(

1
2Dn

)]
f1 · f2 (c is a nonzero constant)

(22)

is a new solution which is related tof1 and f2 under the BT (19)–(21) with parameters
(λ2, µ2, γ2, ω2) and(λ1, µ1, γ1, ω1), respectively.

As an application of the result, we can construct soliton solutions of (16) and
(17). Choose, for example,f0 = 1 and c = 1/(λ1− λ2). It is easily verified that

���
���

��:(λ1, µ1, γ1, ω1)

1

1 + eη1

XXXXXXXXz(λ2, µ2, γ2, ω2) 1 + eη2 ���
���

��:

(λ1, µ1, γ1, ω1)

XXXXXXXXz

(λ2, µ2, γ2, ω2)

f12

where

f12 = 1 +
λ1e−p1 − λ2

λ1− λ2
eη1 +

λ1− λ2e−p2

λ1− λ2
eη2 +

λ1e−p1 − λ2e−p2

λ1− λ2
eη1+η2

with

ηi = pin + qiz + ri t + η0
i qi = λi(1− e−pi ) ri = λ−1

i (e
pi − 1)

and

λi = [epi (1 + epi )]1/3 µi = −λ−1
i γi = λi ωi = λ−2

i .

In general, along this line, we can obtain multisoliton solutions for (16) and (17) step by
step. By the dependent variable transformation (13), we can obtain the corresponding soliton
solutions of (10)–(12). For example,

a(n) = (ep + 1)r2eη

(1 + eη)(1 + epeη)
b(n) = reη

1 + eη
c(n) = 1 + epeη

1 + eη

is the one-soliton solution of (10)–(12), whereη = pn + qz + rt + η0, q = λ(1− e−p), r =
λ−1(ep−1), λ = [ep(1+ep)]1/3 with η0 being an arbitrary constant. Since equations (10)–(12)
do not involve the extra variablez, we may viewz as an arbitrary parameter andqz appearing
in η can be absorbed byη0.

Setψn = f (n)/g(n), u(n) = ln g(n). Then, from the bilinear BT (19)–(21) and by some
calculations, we can obtain the following Lax pair for (18):

ψn+1 + λ−1[utt (n + 1) + utt (n) + (ut (n + 1)− ut (n))2 − γ − ω]ψn
= λ−2(ut (n− 1)− ut (n + 1)) eu(n+1)−2u(n)+u(n−1)ψn−1

−λ−3eu(n+1)−u(n)−u(n−1)+u(n−2)ψn−2 (23)

ψnt + λ−1eu(n+1)−2u(n)+u(n−1)ψn−1 +µψn = 0. (24)

3. Nonlinear superposition formula and rational solutions

We now turn to consider rational solutions of (10)–(12) or polynomial solutions of (16) and
(17). In order to obtain polynomial solutions of (16) and (17), it is enough to consider the
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special B̈acklund parameters of (19)–(21), i.e.λ = 21/3,µ = −2−1/3, γ = 21/3 andω = 2−2/3.
In this case, equations (19)–(21) become

(Dt + 2−1/3e−Dn − 2−1/3)f (n) · g(n) = 0 (25)

(Dze
−Dn/2 − 21/3eDn/2 + 21/3e−Dn/2)f (n) · g(n) = 0 (26)

(Dz − 2−1/3Dte
−Dn + 2−2/3e−Dn − 2−2/3)f (n) · g(n) = 0. (27)

We shall represent the transformation (25)–(27) symbolically byf (n) −→ g(n). Now let
f0(n), f1(n) andf12(n) be three solutions of (16) and (17) andf0(n) −→ f1(n) −→ f12(n),
with f0(n), f1(n), f12(n) 6= 0. Suppose thatf2(n) is given by

exp
(− 1

2Dn

)
f0 · f12 = c sinh

(
1
2Dn

)
f1 · f2 (c is a nonzero constant). (28)

From these assumptions and by use of (A2)–(A6) and (28), we have

sinh( 1
2Dn)[cDtf1(n) · f2(n)− 22/3e−Dnf0(n) · f12(n)] · f 2

1 (n) = 0 (29)

sinh( 1
2Dn)[cDzf1(n) · f2(n)− 24/3f0(n)f12(n)] · f 2

1 (n) = 0 (30)

sinh( 1
2Dn)[cDzf1(n) · f2(n) + 22/3Dte

−Dnf0(n) · f12(n)

−24/3e−Dnf0(n) · f12(n)] · f 2
1 (n) = 0 (31)

i.e.

cDtf1(n) · f2(n)− 22/3e−Dnf0(n) · f12(n) = c1(t, z)f
2
1 (n) (32)

cDzf1(n) · f2(n)− 24/3f0(n)f12(n) = c2(t, z)f
2
1 (n) (33)

cDzf1(n) · f2(n) + 22/3Dte
−Dnf0(n) · f12(n)− 24/3e−Dnf0(n) · f12(n) = c3(t, z)f

2
1 (n)

(34)

whereci(t, z) (i = 1, 2, 3) are suitable functions oft andz. Furthermore, we assume that
f2(n) determined by (28) is chosen such thatci(t, z) = 0, i = 1, 2, 3. In this case, we have

cDtf1(n) · f2(n)− 22/3e−Dnf0(n) · f12(n) = 0 (35)

cDzf1(n) · f2(n)− 24/3f0(n)f12(n) = 0 (36)

cDzf1(n) · f2(n) + 22/3Dte
−Dnf0(n) · f12(n)− 24/3e−Dnf0(n) · f12(n) = 0. (37)

By use of (28), (35)–(37) and (A7)–(A9), we can deduce that

(Dt + 2−1/3e−Dn − 2−1/3)f0(n) · f2(n) = 0 (38)

(Dze
− 1

2Dn − 21/3e
1
2Dn + 21/3e−

1
2Dn)f0(n) · f2(n) = 0 (39)

(Dz − 2−1/3Dte
−Dn + 2−2/3e−Dn − 2−2/3)f0(n) · f2(n) = 0. (40)

Therefore,f2(n) is a new solution andf0(n) −→ f2(n). Similarly, we can show that
f2(n) −→ f12(n).

To summarize, we can seek particular solutions of (16) and (17) via the following
steps. First, choose a given solutionf1(n) of (16) and (17). Secondly, from the Bäcklund
transformation (25)–(27) we findf0(n) andf12(n) such thatf0(n) −→ f1(n) −→ f12(n)

and, furthermore, obtain a particular solutionf̃2(n) from (28). Then a general solution of (28)
is f2(n) = f̃2(n) + k(t, z)f1(n), wherek(t, z) is an arbitrary function oft, z. Finally, we
substitutef2(n) into (32)–(34). Ifk(t, z) can be determined such thatci(t, z) = 0, i = 1, 2, 3,
the correspondingf2(n) is a new solution of (16) and (17). As an application of this result,
we can obtain a sequence of polynomial solutions of (16) and (17). For example, if we choose
f0(n) = n + 21/3z + 2−1/3t +α + 4

3, f1(n) = 1 andf12(n) = n + 21/3z + 2−1/3t +α, whereα is
a constant, then it is easily verified thatn + 21/3z + 2−1/3t +α + 4

3, n + 21/3z + 2−1/3t +α and 1
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are solutions of (16) and (17) andn + 21/3z + 2−1/3t +α + 4
3 −→ 1−→ n + 21/3z + 2−1/3t +α.

Then we seek a solution in the form

f2(n) = (n + 21/3z + 2−1/3t)3 +A1(t, z)(n + 21/3z + 2−1/3t)2

+A2(t, z)(n + 21/3z + 2−1/3t) +A3(t, z)

such that (28), (35), (36) and (37) hold. A direct calculation shows that

c = − 2
3 A1 = 3α + 2 A2 = 3α2 + 4α + 1 A3 = −21/3z + c0

wherec0 is an arbitrary constant. In this way, we may deduce a sequence of polynomial
solutions of (16) and (17) and thus the rational solutions of (10)–(12).

4. Conclusion and discussion

In this paper, a new integrable differential-difference system is proposed. By the dependent
variable transformation, the system is transformed into multilinear form. By introducing
an auxiliary variable, we further transform it into bilinear form. A corresponding Bäcklund
transformation for it is obtained. Furthermore, nonlinear superposition formulae are presented.
As an application of the obtained results, soliton solutions and rational solutions to the system
are derived. Besides, it would be of interest to study the integrable continuous limit and
integrable full discretization for the system (10)–(12) or equation (18). Moreover, we can
further consider the following extended form of (16) and (17):

(Dze
1
2Dn −D2

t e
1
2Dn + 1

2α
2(e

3
2Dn − e

1
2Dn)) f (n) · f (n) = 0 (41)

(DzDt + αDz sinh(Dn)− 4 sinh2( 1
2Dn))f (n) · f (n) = 0 (42)

whereα is a constant. The following BT for (41) and (42) is found:(
Dt + λ−1e−Dn − 1

4α
2λeDn +µ

)
f (n) · g(n) = 0 (43)(

Dze
− 1

2Dn + 1
2αλDze

1
2Dn − (λ− 1

2αλγ
)
e

1
2Dn + γe−

1
2Dn
)
f (n) · g(n) = 0 (44)(

Dz − λ−1Dte
−Dn − 1

4α
2λDte

Dn − λ−1µe−Dn − 1
4α

2λµeDn − ω)f (n) · g(n) = 0 (45)

whereλ,µ, γ andω are arbitrary constants.

Acknowledgments

This work was supported by Hong Kong RGC/97-98/21, the National Natural Science
Foundation of China (project no 19871082) and the Chinese Academy of Sciences.

Appendix. Hirota bilinear operator identities

The following bilinear operator identities hold for arbitrary functionsa, b, c andd:

Dt [Dze
1
2Dna(n) · a(n)] · [e1

2Dna(n) · a(n)] = sinh( 1
2Dn)[DtDza(n) · a(n)] · a2(n) (A1)

sinh( 1
2Dn)(Dta · b) · a2 = Dt [sinh( 1

2Dn)a · b] · [e1
2Dna · a] (A2)

Dt [e
− 1

2Dna · b] · [e1
2Dnc · c] = e−

1
2Dn [(Dta · c) · cb − ac · (Dtc · b)] (A3)

2 sinh( 1
2Dn)[e

−Dna · b] · c2 = e−
1
2Dn [ac · (e−Dnc · b)− (e−Dna · c) · cb] (A4)

2 sinh( 1
2Dn)ab · c2 = (e1

2Dna · c)(e− 1
2Dnc · b)− (e− 1

2Dna · c)(e1
2Dnc · b) (A5)
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2 sinh( 1
2Dn)[Dte

−Dna · b] · c2 = e−
1
2Dn [(Dta · c) · (e−Dnc · b) + ac · (Dte

−Dnc · b)]
−e−

1
2Dn [(Dte

−Dna · c) · cb + (e−Dna · c) · (Dtc · b)] (A6)

(Dta · b)c − (Dta · c)b = −aDtb · c (A7)

[Dze
− 1

2Dna · b][e− 1
2Dnc · d] − [e−

1
2Dna · b][Dze

− 1
2Dnc · d]

= Dz[e
− 1

2Dna · d] · [e− 1
2Dnc · b] (A8)

[eδDna · b][e−δDnc · d] = eδDnad · cb. (A9)
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